ISSN: 2168-958X
Vitor H. Pomin
Following the genome, transcriptome and proteome, the glycome has currently launched in biology bringing apparently more challenges than the first projects. The long major conception of carbohydrates as just energetically involved class of biomolecules has fallen apart as innumerable essential biological actions have been raised, impossible to be enlisted all together at once. Such actions involve not only vital roles in cell and physiology but within a different context they also include potent therapeutic actions in coagulation, thrombosis, inflammation, virosis, pathogenesis, tumorigenesis, metastasis and angiogenesis. Glycomics is so extensive project that subdivision is necessary for its progress. Specific segments of research have been created about particular bioactive sugar classes such as sialome for sialic acids, and heparanomics for heparan bioactive domains. Fucanome and galactanome must be also included in the recent glycomics age with respect to the relatively new class of marine fucose and galactose-composing polysaccharides named sulfated fucans and sulfated galactans. These glycans are very biologically relevant since they show potent pharmacological properties in many of the above-mentioned systems; besides in sea-urchins they are responsible to control a very rare case of carbohydrate-mediated cell signaling event, the acrosome reaction. The structure of these glycans is very restricted to phyla or species of occurrence. Among all marine organisms, only invertebrates and red algae have been able so far to express high molecular weight polymers composed of well-defined structures. These structural features are unique and very rare among any bioactive polysaccharide ever studied. This would make fucanome and galactanome differential glycomics subprojects in terms of structure and phylogeny. The current paper not only brings out novel segments presenting their respective contribution to glycomics but also highlights the great relevance of pharmacological effects of new glycans in the current glycome era.