ISSN: 2161-0932
Michelle X Liu, David W Chan and Hextan YS Ngan
Ovarian cancer is one of the most deadly malignancies in women because of its poor prognosis and that a majority of patients are diagnosed at advanced stage. Therefore, chemotherapy becomes the most important treatment option in most ovarian cancer cases. However, chemoresistance in relapsed cases is the major obstacle for the clinical management of this disease. Mounting evidences have suggested the de novo (intrinsic) and acquired (extrinsic) chemoresistance are two major underlying mechanisms occurring in human cancers. The de novo chemoresistance is attributed to the existence of cancer stem cells, while the genetic and/or epigenetic alterations in dysregulation of oncogenes or tumor suppressor genes contribute to the acquired chemoresistance. In this review, we will summarize and discuss the recent findings of the above mechanisms in chemoresistance and particularly, we will focus on the significance of putative miRNAs expressions and their associated signaling regulations in the development of acquired chemoresistance in ovarian cancer.